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A MATRIX TRZATMENT OF THE GEHERAL PROBLEM OF LEAST SQUARES
CONSIDERING CORKELATED OBSERVATIONS

ABSTRACT

The most general type problem considered in least squares
is formulated and solved with the aid of matrix algebra for the
case in which the observations have the zeneral multivariate
normal distribution. The criterion for adjustment is the prin-
ciple of maximum likelihood. Such related topics as the inver-
sion of the normal equations, variance-covariance propagation,
direct adjustment of functions of observations, statistical
tests of significance, and the geometrical interpretation of

the adjustment are considered. It is pointed out that the results

of the comnventional method of least squares are special cases
of the present theorye.



1. INTRODUCTION

In recent years several writers have employed matrix ai2lysis 4o derive
Special results for the method of least squares. Dwyer (1944) [1] employed
matrix algebra in considering the least Squares determination of linear reg:es-
sion coefficients. Along the same line, Aitken (1935 ) [2] ana cohun (1953) [3]
derived matrix results for the adjustment of correlated cbservaiions using the
minimum variance criterion. Perhaps the most extensive werk to date js that of
the German geodesist Gotthardt (1952) [L] whose matrix presentation sovers the
basic material treated in such texts on classical least zquares as Merriman (5],
Weld [6], and Leland [7]. A fairly broad matrix presentution can also be found
in a textbook by Arley and Buch (1950) (81.

None of the above writers considered the subject of a matrix *reatment of "
least squares with full generality. What we shall presently regard as the Zen-
eral problem of least squares was first formilated and s.lved by *Le geode,q st
Helmert (1872) [9], [10]. However, Helmert's results apparently remained )ayge-
1y unknown to English speaking mathematicians, and the problem was 27:ir/ rormg-
lated and solved by Deming [11], [12], [13], [14] 3n 7931. Iike Helmev4, feming
recognized that all problems in least squares conid he considered fror; & single
point of view, namely, as problems of constrainad mirims, Thus, all. l.-s4
8quares adjustments consist basically of the rdnimd zntion of/aq(uauc form
the variables of which are subject to certain equetionz of ¥onstraint, vhe so
called condition equations. Deming's unique contritution jqq one of interpreta-
tion and application. For instance, by fully utilieirg tojg concept he gave a
satisfactory solution to the hitherto unsolved zeneral. jir+/ lom of least squares
curve fitting with more than one variable in error, r

In this paper we shall emplcy matrix aralysis to k\xtef,lm the Helmert-Deming
gersral problem o’ least squares to the cass for which the: ¢hservations have
the general multivariate normsl density. liowever, i desi: ‘ied, the results may
also be considered from the minimum variaice point of view.' Yhus, the conven-
tional method of least squares and the principal rasults of ¢phe above references
emerge as special cases of the present development. G

2. STATEMENT OF THE GENERAL PROBLEM '
|
let XPy X5y eee %y be the =lements of a sct of ubﬂer-altim,. Aszume tam-
porarlly that all the ohservations are ideal, i. e., error filgg, Then Lae ot
is overdetermined if ary subset is sufficient to determine t.a whole s=t. ‘iras
degrees of freedom r of ths set is equal to the number of ﬂbﬁ'lemt.inns in excess
of the minimum number n, Tefuired to determine {he whole set’ (r=p = Ng)« The
numbar of independent ceondition equatlons wristing bebween - e observations is
egual to the degrees of frezdom of the set. Tn nAny casges, foynpye fitting for
instance, it is convenient :c introducs p unkriown 'pa.rﬂsxmbe',é in setting up ths
relations between the ovbsrrvaiions. The total number O independent condition
equations existing between the cuservations and paramsfiors iz thenm = r + p,
Let this set of 2 conditien #vatl ons be dencted by

(24 :“{x,,xz,...,x,,,cx,,az,...,(xp): BT t=1,2,....m,
“Pere Gpy Gy, .o 40, are the unk 10PN paremeters and the %, are adjusted values
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of the origlnal observations: that is

2.2) xi = x'.°+ V, = obeerved value + residual .

Since the condition equations must be indet endeﬁt, it is necessary that the rela-
tions m.ipy n am - p (or more compaEtily n + pamaip) hold, If the p parameters
are not mtually independenit, the relations existing between them must be in-

cluded amOW‘o’ndition equations, Hence s Lp of the m condition equations
may invely§ parameters only. Introducing known approximation values g’ for ths

/E%ﬁﬁeters with

e

¢

(2.3) a, =a®+ 8

' i d

the condition eguations can bs written

£ v
(2.4) 1 XDV XtV , . KR Y, , 07 48, Q3t8,, ... ,00+8,) T O,

I =0,2,...,m .

Assuming the v's and 6's to be sufficiently small, (2.4) can be approximated by
the =ero ind first order terms of its Taylor expansion. The linearized condi-
tion eguations ure thus

i) p

(2.5) PRSP L MUIEE PR Pengm,
ir whi.ch

afio
(2.6) fy = ‘a—x;o‘

_ 2fio
(2.7) fio; = 307
(2.8) f;o=fi(xl°:x;r"° ,x:,a,",a{,...,a;) .

Iet 0;; denote the variance of the observation x}. Then the general prob-
lem of least squares as considered by Helmert and Deming is to determine the
set of residuals and parameter corrections which minimizes the sum

(2.9) S = ,#(%')Vf ,

while satisfying the condition equations (2.4) or equivalently (2.5). The quan-
tity /0, is the weight of the ith observation with O an arbitrary constant
termed the unit variance or variance of unit weight. If the observational errors
have the normal distribution, the residuals so obtained are the most prohbable
values, and the least squares and maximum likelihood adjustments are equivalent.
Suppose, however, that the errors have the general multivariate normal distri-
bution., Temporarily considering the residuals as the actual errors, the distri-
bution is

4 = =
(2.10) h (v, R/ ,Vn) z (2_11':)? (’o--;’)z e %v‘l’o’ Iv '

where O is the covariance matrix of the observations, |0"”'| the determinant of




O ~'. saa V the vector
(2.11) Via(vg ... %),

the superscript T denoting transposition. For this case the mc.it probable set
of residuvals is clearly that which minimizes the qQuadratic form

(2.12) S=V'0g'v,

or.a mltiple thereof, while satisfying the specified condition equations., The
classical method of least squares corresponds to the special) ~zse for which

is diagonal, i. e., the observations are mutually independer.t and are normally
distributed. Henceforth we shall use the terminology 'methad of least squares!

in a broad sense to denote the maximum likelihood adjusim-r of observations
having the general multivariate normal distribution.

The set of linearized condition equations (2.5) can be expressed in matrix
notation by

(2.13) F.V tF,A *F =0,

where in addition to V defined above we have

s 3
A fo fe f] (8] [te
g % gn ‘q g'g ‘o' s! '20
2.4) K, = |: PR T N E T O
T .- a .
o e b by G | ) \

The problem to be considered is to determine, of all possible vectors V and A
which satisfy (2.13), those which result in the minimization of (2,12)., Refer-

ences [2] and [3] treat basically the case in which F_ is a square onal
wirter ot i S mondiagonal(correlated observations). in (1], LLl. and L8], F

is also square and diagonal, but the cbservations are uncorrelated( O dhgom'f).
In addition references [L] and [8] also consider the case in which several
ocbservations appear in each of the condition equations but no parameters are
1nvolved(Fx° rectangular and filled and l;" nonexistent).,

3. THE NORMAL EQUATIONS

Problems in constrained minima are most conveniently solved by the method
of Lagrange multipliers, also called the method of correlates. Accoriingly let

(3.0) AT =(A A o Ap)

be a vector of m undetermined constant rmultipliers, one for each equation of
constraint(condition equation). We must then minimize the expression

(3.2) S-V'0'V-24(RV+E A+ F).
Differentiating this with respect to the free varisbles V and A gives

7




(3.3) ds = 2(V'0’"—A’Fx°)dv - 24'F dA .

At the minimum of § > 45 must equal zero for all possible variations of dv and
dA., This requires that

(3.4) VIO" -A'F, -0,

(3.5) E A =0 .

Solving (3.4) for v gives

(3.6) V=0RA,

and since V must satisfy (2.13), we have
(3.7) (ROFR A +FEA+FE =o.

The vectors A and 4 can be obtained by solving (3.5) and (3.7) simltaneous A
and then V can be determined from (3.6), Combining (3.5) and (3.7) into the
single matrix equation

F.OF E)\[A) (F] (o
(3.8) RO P L
ET oJla" o] " o

gives the general system of normal equations for the adjustment. Except for
the recognition that 0"is not Necessarily diagonal, equations (3.6) and (3.8)
are the matrix equivalents of the results obtained by Helmert and Deming,

L. INVERSION OF NORMAL EQUATION COEFFICIENT MATRIX

If any of the condition equations involve parameters alone, £  will be
of rank less than m and consequently the m Xm matrix RO FT will be singular,
To allow for this possibility in the solution of the normal equations we assume

that the last s <p of the m condition equations involve the parameters only, LR
will then have the form

“l fl! ot f"' ]

le &2 &"

. . E'
(4.') F‘O ® fm-sl fm-s | '- _' _IfIﬂ:s_n ) -6. ’

o o "7

& o)

where the last s rows are composed of zeros. The broken line indicates the

v




partitioning employed. Partitioning the matrices RN\ and F, in a corres-
ponding manner, we have -

’fla‘ floz e ‘a, ]
fo, o, ... ko,
N L

(4:2) 60 = ‘u-l 0’ ‘n-. gz E"_-:a-!— -"": b

ﬁl“.lq;h$¢|% fﬂ"l'lﬂ,

A fo, |

(A ] fs |

Ag feo

! Fl

(4.3) A - m-3 = _A__ » FO = fn-u (] = [_F._]

- P I PR

gl A fn-ge1 0 °

xﬂ %mo J

From (4.1) it follows that

(4.4) EOE - [’5.' Or 0] )

o o

and this substituted into the general normal equations along with (4.2) and

(4.3) gives

FRORT o g1 (4] [F] o
(4.5) (o] o F" At + o' =101

T BT ojla) o] |o

or in a more convenient arrangement

ROE™ £ o fa] [g] [o
(4.6) 70 Erilal+|o|= o
- o li: (o] g e o

This arrangement of the normal equations is generally suitable for elimination
solutions. If such a solution should break down at any point, i, e., division
by zero occurs, it is merely necessary to delete the row and colum where the
difficulty occurs and remove them to the end of the mtrix, taking care to

9




remove the corresponding unknown also. Such a breakdown would happen, for
instance, if kO F)J were singular, or for that matter, if any square submatrix
containing an'entire left hand section of the diagonal were singular.

In order to derive a useful general expression for the inverse of the
coefficient matrix in (4.6), it is necesgary that certain matrices to be
defined presently be nonsingular . Since this can always be achieved by proper
formilation or manipulation of the condition equations prior to the adjustment,
the ensuing development may be ronsidered general.

Denoting the coefficient matrix in (L.6) by N, it is a straightforward
matter to show by the method of Submatrices that

G'-H'QH H'Q -H'K'L'

(4.7) N"' = QH -q K'L'
-U'KH L'k L'

in which

(4.8) D:- F O

(4.9) G- DFRT

(4.10) H = EFI'G™

(4.11) J:= HEF!

(4.12) K = FiJ”

(4.13) L= KE?7

(4.14) Q- J'-K'L'K .

From (4.6) and (L.7) the roots of the normal equations are
(4.15) A': -(G'-H'QH) F' + (HTKTL)F?

(4.16) A:-(QH)F) —(K'L)F?

(4.17) &: (U'KH)F -(LY)F? .

Unless appropriate measures are taken beforehand, it is possible for Goryd
to be singular, since the ranks of the factors F and !;.' can be less respect-
ively than the orders of ¢ and J. On the other hand, "1t 1s not necessary to

assume that L is nonsingular » for this is assured by the independence of the
condition equations.

Some relations among the Suxiliary matrices (4.9) - (L.1)) are

(4.18) HGH' = ¢
(4.19) KJKT = L
(4.20) QJQ Q.

Note that since for the general case Q #J"', equation (4.20) implies that Q
is singular, It will be shown later that Q is the covariance matrix of the




parameters. Hence for the general case considered in which the parameters are
not necessarily independent, it is to be expected that Q be singular and of
rank p=s.

S. COVARIANCE MATRICES RELATED TO THE ADJUSTMENT

Let Y and Z be arbitrary vectors of variates with
(5.1 Y'= (Y ¥ W)
(5.2) 275 (2, 2, -..2)) .
Then clearly
N2, %2 ... Y2

(5.3) YZ7 - %e %Z ... Y2

%4 %NZ - N2,

and we define

ey‘z' o’y‘zz o.ylzl

. o o -
(5.4) 0’,,, = LI "%, %2
0’),. 5 Yz o Ty 2

as the covariance matrix of the vectors Y, Z. It readily follows that
(5.5) anyz'l’ = (a-z'fy)‘r.

If Y=2Z we shall simply refer to (S.L) as the covariance matrix of Y.
Now let

(5.6) U o ou (X, XS, XD ), len2,...,q,
be arbitrary functions of the ocbservations x‘;. Differentiation gives
(5.7) dup = Sujdx,

where U, is the partial derivative of uj with respect to xj. Regarding duj as
the crrgr in uf resulting from errors dxj in the cbservations, the covariance
of duj, du} and hence that of ug, uj is

(5.8) %%y - P%g ug; 9 W,

where 0'ij denotes the covariance of x3, x;. Letting




U (xp, xg, ..., x3) x? - fa)
Ug { P, x3 x2) x$ ol
(5.9) uo= 1282y ¢y Ap x = ; a ) _g_
, e b x -\
_uq(x‘l’:xgn ---yx,o.) x: P-)

we can express (5.7) as

(5.10) dUo - (aazuz)'dx, = U dX, »
and it follows readily from (5.8) that

(5.11) Ou,u; = Ux, OiUx, = U,, O Ug

is the covariance matrix of U, By means of this result the covariance matrix
of any vector of functions of the cbservations can be determined.

Of particular interest is the covariance matrix of the unknowns in the
normal equations. Letting

(5.12) Wl = (AT A AT),
(Fov'r o '_;!T) R
the solution of the normal equations can be written

(5.14) W, =-N"'C, .

(5.13) cl

Since N is essentially unaffected by the observational errors and hence may be
considered constant, we have from (5.1L)

(5.15) dw, =-N~'dC,

with
= 12 ¢I = (2 FIT 2_F2n\7
(5.16) ch (sgoco) dxo (aonO o axo% ) dxo ’
But by definition
-J It - m
(5.17) X, K k.,

and since E2 involves parameters only,

(5.18) a_Frm: 0,

—

aXo
Hence in (5,16)

(5.19) dG,: (F” 0 0)" dX, .




From (Le7), (5.15) and (5.,19) it follows that

G- H'QH
(5.20) dw, =- QH | B dX, = W, dX, .
-L'KH

Applying (5.10) and (5.11) yields

G'-HQH G'-H'QH |7
(5.21) Oew; - QH | R, OET QH | ,
-L'KH -L'KH

which reduces to

G-‘—HYQH 0 -HK'L' O;B-An' GA.Av O'A-Aﬂ'
(5.22) o’wovgz o Q o = O’AA‘Y O’AAT O’AN* N
_l:' KH o L-' O.A"'A" O’A’A" o’AzA“
Comparing this result with (L.7) shows that the covariance matrix of the un-
knowns can be obtained directly from the inverse of the normal equation co-
efficient matrix. Notice also that the covariance matrices of the vectors A, A

and A% A are zero. Since by (3.6) V is a function of A alone, it follows that
the residuals and paramster corrections are mutually independent.

To derive the covariance matrix of the residuals we use (3.6), (L.l),
(hoB)’ (h.B) and (’Jo]S) to write

(5.23) V= OFA - D'A' = -D'((6"-H'QH)F} - (L'KHJF}) .
Hence by (5.17) and (5.18)

(5.24) dV = —-D'(G'-H'QH) F! dX, = V,, dX% ,
which leads to
(5.25) O = OV =D"(G'-H'QH)D - D'GD .
From this and (5.2L4) we see that
(5.26) VO:=0V --V OV --0,. -
We shall next determine the covariance matrix of the adjusted observations.
This matrix is of primary importance, since comparing it with the covariance

matrix of the original obcervations ‘enables one to gage the improvement effoct-
ed by the adjustment. By (2.2) we may write

(5.27) X:=X,+V .



where X denotes the vector of adjusted observations, Differentiation glves
(5.28) dX = (I +V )dX, ,

and using (5.26) the covariance matrix of X turns out to be
(5.29) O;X" =0 - mvr .
This shows that the covariance matrix of the adjusted observations is equal to

the covariance matrix of the original observations minus that of the residuals,

“rie the adjustment is completed it is often required that functions of the
adjusted observations, or more generally of the adjusted observations and para-
meters, be evaluated and that their variances be determined. The latter can be
achieved through a reinterpretation of (5.6) - (5.11). Let

(5.30) U = WX X, Xq,@y,05, ,05) , Paha, .o,

be arbitrary functions of the adjusted observations and parameters and let U be
be the vector of the u; . Then with obvious notation

(5.31) dU = U,dX + Us dA = (U, U,) g:],
and since by (2.3) dA - da , we have
(5.32) Ouur =(Ux Ua) O.EH:JY (Ux U )T.

The covariance matrix cf the vector (XTA')" is readily found to be

(5.33) e - |7 T DHO] [a,,,, 01‘]
| el Lomo Q) |G O

and this result along with (5.32) may be used to determine the covariance matrix
of any vector of functions of the adjusted observations and parameters.

6. DIRECT ADJUSTMENT OF FUNCTIONS OF OBSERVATIONS
In section 2 it was assumed that the x} were the original observations.
We now relax this requirement by considering the x{ as independent functions of
(perbaps) more elemental observations i; which have a known miltinormal dist-
ribution. Accordingly we writs :
(6.1) X) = @ (RP,23, R, L L
Differentiating tids gives

(6.2) dx; - £ @, di;
ot

in which dx{ may be regarded as the error in the derived observation x° result-
ing from errors dx; in the elemental observations &7 o Writing (6.2) in terms
of residuals rather thun differentials gives

14
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/

(6.3) v - Se. 0,
LAl

or in matrix notation
(6.4) V-0ov.

As in the original case we assume that the adjusted, derived observations must
satisfy the condition equations (2,1). However since the distribution of the
derived observations is not now known, we must use the distribution of the
elemental observations to obtain the adjustment. From (2.13) and (6.L4) it fol-

lows that the linearized condition equations in terms of the elemental resid-
uals ¥, are

(6.5) F,®V +EA +F, - 0,

and the most probable elemental residuals are obtained by minimizing, subject
to the constraint (6.5),

(6.6) S :-V'gy

in which 6' is the covariance matrix of the elemental observ_ations.

Following the procedure of section 3 with regard to (6.5) and (6.6) we
arrive at the following results. The most probable elemental residuals are

(6.7) V-G®Fna,
and A and A are obtained from the normal equations
oo [o2em gm0
E 0|l|A o o

From (6.4) and (6.7) the derived residuals are
(6.9) V:00dFA,
and since the covariance matrix of the derived observations is
(6.10) o-0009,
equations (6.8) and (6.,9) can be written

KO FE)[A) [F] [0
SO 4 W R
(6.12) V- OFKA.

But these results are identical respectively with (3.6) and (3.8) which were
obtained by minimizing V7O "'V subject to the same condition equations. Hence

it is possible to adjust derived observations directly and without modification by

the procedures developed earlier. From this we might infer that the derived
observations also have a multinormal density with covariance matrix given by
(6.10). A direct proof of this is given in the next sectiom.

15
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If the derived resiciuals are obtained from (6.11) and (6.12), the problem

remains of doundnlr‘tbo elemental residuals. This can be accomplished by
multiplying (6.9) by O &7 (@ T @T)' which gives, according to ,';g .

(6.13) V-0 (00e V.

(60 F)

The interesting feature of this result is that it is the same thing as the least
squares adjustment of the elemental observations subject to-condition equations
given by (6.L) in which the vector of derived residuals is assumed to be known.
Hence once the derived resiiuals have been obtained, the elemental residuals
can be determined from a new le2st squares adiustment in which the condition
equations are the relations Yoiueen the elemental and derived observations.

The results of this section free us of the sometimes cunbersome restriction
of having t0 adjust the elemental observations directly. Moreover, by judi-
cious formilation of a given problem and cholice of derived observations effi--
cient solutions can often be developed. Sometimes, for instance, it is pos-
gible to calculate a single covarlance matrix for the derived observations,
which can be used for a series of different, successive adjustments. In other ¢
cases efficlient approximation solutions can be developed. For example, if the
diagonal terms of O strongly predominate, it may be possible to ignore the
nondiagonal terms completely without altering the final results significantly.

An application of this principle in the field of photogrammetric triangulation |
is given by Brown [15] .

7. JOINT DISTRIBUTION OF INDEPENDENT LINEAR COMBINATIONS OF VARIATES FROM A
MULTINORMAL DENSITY

For present purposes we shall consider V and V as vectors of the actual

errors in the elemental and derived observations respectively. By hypothesis
the distribution of the elemental errors is

(7.1) B3y, = () (160 o- HVTTV

\‘ile scbhall show that the joint, marginal distribution of the derived errors,

is a multinormal density with covariance matrix given by (6.10).
Equation (6.4) may be rewritten as

(7.2) V:0V+e,V,
in which &, is the square matrix defined by the partition

¢H ¢42 e ¢Hl : ¢Ind e ¢lk

(7.3) o'(°::°g) = ¢j2' ¢522 fzu ¢52nu ?2&

¢'" :¢nz--- ¥n0:¢nnﬁ :¢nk

and
A' ~ ~
7.4l AR ARLAS T A A S L

Since the v's are independent, we may assume that the variates have been so

16




ordered that P, is nonsingular. Solving (7.2) for V, in terms of the n
derived errors and remaining k -nnlemental errors gives

7.5) V= ®(V-®,V,),

and according to (7.4) this allowsus to write

v 18 #;Tv-#,i;.i_ o' &', [v
/ Letting
(7.7) E AR E A R A

the Jacobian of the transformation ((7.5) is

(7.8) L%— \7,” = @7,

and the joint distribution of the v's and the last k - n ¥'s is thus

{7.9) g (v ann-“:Vnanll'“:ok, 4 h(ol IVZI"‘Ivk) ,%—9,7'

A P - A oA
= (fr)? (171G ) @2 VIOV
which according to (7.6) may be written

(7.10) g - (24,,)f (17121 )t o= # (VIR (VT §)T,

This is a multinormal density in which

(7.11) a'- g O O] (6 G [0 -'e,
| e e 1 )la 6o
is the inverse of the cova

riance matrix of the vector (VT ¥I)T. The middle
matrix in (7.11) is merely &' partitioned to be conformable with the sub-
matrices of its factors,

The marginal distribution of the v's in (7+10) can be obtained by inte-

graling out the v's. As is well knawn ( Mood [16] ) this will lead to a new

multinormal distribution the covariance matrix of which can be obtained b

:;rikingtgzz the last k-n rows and columns of N, To obtain N from N we
serve

[ ¥ -o;'q} K (@, 2,
(7.12) =
) 1 o 1

and invert (7.11) applying the reversal rule. The reduced result is




(7.13) a - [9' a;'@{ + an;, Q"' "'0,6,'3@; + °¢¢,°; ol 64‘2'*0:6.&

which by the partitioning of & and @ can be written more compactly as
®Go° ©
a- [

(7.14) N
o7’

0
0;.
where O, is defined by -

. (&
(7.15) g, - [A'z] .
0.

Hence by (7.1L) the covariance matrix of the v's in the marginal distribution is
(7.16) o :-0050,

which agrees with (6,10). The marginal distribution of the derived errors is |
thus

(1 7 hev ) = (55) (101t - #VTOV

which is the result we set out to establish. Since the covariance matrix of
the set of varlates is unique, this result could have been established directly
from (6.10) and the fact stated above that a marginal distribution from a
mltinormal distribution is also a multinormal distribution.

8. EVALUATION OF THE QUADRATIC FORM OF THE KESIDUALS

While S can always be computed directly from the definition (2.12), this
is not always convenient, especially if ° is nondiagonal and difficult to invert
or if the vector of residuals is not otherwise required. It is possible to de-
rive altermate expressions for S which involve neither V nor O and which are
essentially byproducts of the solution of the normal equations. Thus, starting
with the definition (2.12) and employing (5.23) and (L.S) yields

(8.1 S:=V'O'V - (A"f;',: o) O’"(O’E,'.'A') :ATGA' .

A simpler form results from this if we successively employ the relations

(8.2) GA = - (F + FA:,A)’ A'TF;',: .Aifﬁf, ﬂiA = -F?,

which follow directly from the set of normal equations (4.6). The reduced result
gt S=-A'F - ATFf = - A'F,,

which corresponds to the expression given by Deming (1L (equation 17, p. S7)
for the general uncorrelated case. This result provides a convenient starting
point for the derivation of still other expressions for S which may be useful
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in special cases. For the general problem, however, it is doubtful whether a
simpler or more convenient formla than (8.3) exists.

When the original condition equations have been linearized by Taylor's
series, a sequence of iterations of the solution may be necessary to remove_the
influence of neglected higher order terms. In this case the final value of the
vector Vv is the sum of the initial V and those obtained from successive itera-
tions. The same is true of the vectors A, A and F, . Equation (8.3) is
not strictly valid when A and F, result from iterations. It should, however,
provide an accurate approximation in most cases. An exact expression for S when
N iterations have been performed may be derived from the second equality of (8.1).
Let (A™); and (F.)i be the values of A7 and F, corresponding to the i'" itera-
tion with the values for the initial solution corresponding to i=0. Then

(8.4) S=8B"08,

vhere B is the vector
N

(8.5) B'= 2 (A7) (F'),
i=0 °

The principal merit of this result is that it does not require the inversion of
O . If this is not a serious problem, it may be preferable to employ the first
equality of (8.1), using the final vector of residuals.

9. TESTS OF SIGNIFICANCE FOR THE ADJUSTMENT

Deming (1935) [13) has shown that the quadratic form of the residuals ob-
tained from the least squares adjustment of uncorrelated, normally distributed
observations has a X2 distribution with r = n - n, degrees of freedom (see first
paragraph of section 2 of this report). By means of a transformation of the re-
siduals it can be shown that this result holds for the correlated case as well,
This fact may be used to provide a test of significance for the adjustment. Es-
sentially, the test determines whether the estimate of unit variance obtained
from the adjustment is compatible with the pre-established value. We set

2

(9.1) x‘ L 4 S

and determine the probability P(%? 232 ; r degrees of freedom) from a table of
the X* distribution. If this probability is unreasonably small (or large,
though this would rarely occur in practice), a poor adjustment is indicated and
an effort should be made to determine and, if J)ossible, correct the cause. Among
the principal reasons for an unsatisfactory ~x° result are:

(a) Computational errors: Though mention of this possibility may seem
trivial, it is felt that the correctness of the computations should be
established before seeking other explanations. This is especially true
if the adgustnent is routine and has been consistently successful before,
or if P(*® 2 %{ ) turns out to'be 50 extreme that the other possibilities
to be mentioned seem unlikely.

(b) Uncorrected systematic errors in the observatioms: An investigation
into all phases of the measuring operation is necessary to evaluate this
possibility. Special instrumental calibrations provide the means for
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correcting such ‘errors's It should be pointed out that a satisfactory %’
result does not, in itself, preclude the existence of systematic errors,
especially if they are constant or nearly so.

(¢) Inadequate or incorrect condition equations: The condition equations
represent a mathematical model of a physical situation and as such are
satisfactory only if they actually approximate the true situation to a
degree compatible with thu accuracy of the measurements. In many cases,
as measuring accuracy increases, more complex models become necessary in
order to account for previously insignificant factors. If a model is in-
adequate, it may well show up in the x* test. However, since inadequate
models can result from systematic errors, the remarks of (b) hold here
also.

An adequate set of condition equations may lead to an inadequate set of
linearized condition equations due to the influence of neglected higher
order terms. The residuals or parameter corrections may be so large that
ordinary iterations actually cause the solution to diverge or to converge
to an incorrect result. When such dificulties result from poor approxima-
tion parameters alone, the method of 'damped least squares' developed by
Levenberg (1944) {171 my be useful (this is discussed somewhat in the next
section), while if the residuals also are too large, a gradient method of
mnimization described by Curry (19LL) [168] may lead to a satisfactory
solution.

Aside from inadequate condition equations, which may be regarded as
poor approximations, incorrect equations, which do not approximate the
physical situation at all, may be included among the set of condition
equations. Incorrect condition equations result from outright mistakes
or from faulty analysis and can be expected to affect the X* result ad-
versely.

In corplex measuring situations the most difficult problem may not lie
in the actual adjustment, for this can be done straightforwardly by the
methods of this paper, nor in obtaining correct condition equations, but
rather in the determination of the degrees of freedom of a set of observa-
tions and hence of the number of condition equations. We may speak of an
incomplete or overcomplete set of condition equations according to whether
less or more than the correct nurber are chosen. Assuming the individual
condition equations to be correct, an overcomplete set will lead to a
singular set of normal equations. An incomplete set, on the other hand,
may yield a solution and may or may not result in a poor x? test, depend-
ing upon the importance of the omltted condition equationms.

(d) Inaccurate covariance matrix of the observations: In order to make the
%x? teat it is necessary to assume that O is accurately known. Actually,
in practice, an estimate of O, generally derived from replicated obser-
vations, is used. In order to have confidence in such an estimate the
degrees of freedom upon which the estimates of the elements of O are
based should be reasonably large, say greater than 20. In many problems,
the elerents of the covariance matrix of the observations may be known
precisely to a constant multiple, Cse, the variance of unit weight: that
is 0= C,,0; where U, is known precisely. In this case only Cs. need be
estimated, and an alternate test of significance described below may be

used to compare the least squares estirate of unit variance with a given
prior estimate.

From the least squares adjustment under consideration we may obtain an

estimate (O.), of O;, with (note that if O..is unknown, 8 = V&'V = G.V'O~'V )
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S . O
(9.2) (0;°)| T 3 —F .
Hence 1
12| _ (0;o)| |
(93) T = Oso

in which, for the sake of uniformity, we have used », rather than r to dencte
the degrees of freedom. Now let (Ucolo be an estimate of Ui, obtained from a
least squares adjustment independent of that from which (0;,), was obtained.
(Note that the usual, straightforward method of computing the variance of a set
of repeated observations from the sum of squares of deviations from the mean is
essentially an estimate based upon a least squares adjustment.) Letting the

degrees of freedom associated with such an independent estimate be r,, we may
write

(9.4) ro - o/ 8

We then form the ratio for the F distribution

4
- . Xl/rl n (_c;o)|
©-51 R A A |

o'o |

The value P(F\F,; r,, r, degrees of freedom) provides a test of the compat-
ibility of the two estimates of unit variance and should be used in place of
the X° test when the unit variance is not accurately known beforehand. When
r, is large the X° and F tests lead to similar results.

When it is not possible to obtain an independent estimate of O:ce, the
above tests cannot be applied. In such cases the adjustment is employed to ob-
tain the estimate given by (9.2). Indeed, this may even be the primary purpose
for the adjustment. It must be kept in mind, however, that for such an estimate
to be valid it must be known that such factors as have been mentioned above do
not influence the result significantly.

Mistakes can often be localized and the nature of systematic errors and model
deformities revealed, through a study of the individual residuvals and parameters.

Although the X2 and F tests described are applicable to the great majority of
problems involving physical measurements, more general methods are required when
the conditions underlying their application are not fulfilled. In this regard we
shall merely mention that such methods are provided by tests based upon the Wish-
art and related distributions. A derivation of the Wishari distribution together
with a study of its properties and applications is given bty Wilks (15L43) [19].

10, GENERAL REMARKS

Consideration of the general least squares adjustment and related problems
in terms of matrix algebra provides a broad, uncluttered concept of the proced-
ures and operations necessary in the reduction. Since all problems in least
squares are merely special cases of the general problem, there is no need for
the classification of problems into distinct categories. It is probably this
compartmenting of least squares which so long delayed the solution of the gener-
al curve fitting problem and has otherwise retarded the application and inter-
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pretation of the method.

In soms problems the distinction between observations and parameters is not
¢lear cut. A parameter may have a physical interpretation and ve capable of
direct mesasurement. In such cases an approximation value of the parameter is
sometimes obtained from a direct measurement. But if such a quantity is actual-
1y measured and has a probability distribution, it should, strictly speaking, be
treated as an observation. In practice, however, a measured quantity is often
regarded as a parameter, rather than an observation, when it has a very large
variance compared with that which would result from calculating the quantity
from the other observations. It might thus be conjectured that in a least
Squares adjustment a parameter may be regarded as an observation with infinitely
large variance. It turns out that this consideration leads to the same results
as the original development, providing it be postulated that an observation of
infinite variance contributes nothing to the degrees of freedom of a set of ob-
servations.(Since variates must have finite variances in order to have the mul-
tinormal distribution, this discussion should be considered only in a heuristic
sense). This concept allows the forrmlation of approximation procedures in
which observations with relatively large variances are treated as parameters.
Conversely, treating parameters as observations with relatively large variances
can lead to useful results. Levenberg (1944) [17], for example, used this con-
cept implicitly in deriving the method of 'damped least squares, ' which is use-
ful when the usual least squares solution fails to converge due to poor approx-
imation parameters. In essence, Levenberg showed that by treating the param-
eters as observations with appropriate variances (a method for calculating
optimum variances was given) the solution can be made to converge to the correct
result. Normally, with each iteration the variances of the parameter residuals
increase until ultimately they no longer influence the solution. Although
Levenberg derived damped least squares only for the special case in which a sin-
gle, independent observation appears in each condition equation (O diagonal; L3
square, diagonal), the method can readily be extended to hold for the general
case. Incidentally, this provides an illustration of the fact that many results
which have been proven for a specific area of least squares actually hold (per-
haps with slight modification) for the general case as well.

The least squares adjustment is capable of the following geometrical inter-
pretation. Consider an n-dimencional coordinate system with orthogonal axes
Vis Va3 eee 5 Voo Then the quadratic form 8$:VTO'V, being positive definite,
will represent an n-dimensional ellipsoid (a detailed study of the n-dimensional
ellipsoid is given by Wilks (1943) [19] ). The ellipsoid is centered at the ori-
gin. If O is diagonal, the axes of the ellipsoid will coincide with the coor-
dinate axes, while for O nondiagonal the ellipsoid will be in a tilted orienta-
tion. It is clear that by a rotational coordinate transformation, a‘tilted
ellipsoid can be reoriented into a standard position. Such a transformation is
specified by V:RY where R is an nxn matrix whose rows (or colurns) are com=
posed of the normalized characteristic vectors of ¢. Thus a problem involving
correlated observations can be reduced to one involving derived observations
which are uncorrelated. The dimensions of the hyperellipsoid are, of course,
unaffected by a rotation. In fact, the lengths of the axes are directly propor-
tional to the square roots of the characteristic roots of O . The constant of
proportionality which determines their absolute dimensions is simply @Y2 ., It
thus follows that the volume of the ellipsoid is directly proportional to 8
(the complete expression for the volume is given by Burington and May (1953) (20] )
Therefore, minimizing S is equivalent to rinimizing the volume of the ellipsoid,
it veing understood, naturally, that the condition equation constraints must be
satisfied by some paint on the ellipsoid. To simplify matters we may assume
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that any parameters have been eliminated from the linearized condition equations,
L2aving r relations between the residuals alone. Each condition equation then
represents a hyperplane, and the residuals must lie on the intersection of the r
hyperplanes, Now consider the family of hyperellipsoids defined by varying § .
The orientation and relative dimensions of such ellipsoids will be constant, and
all will be centered at the origin. We may think of the family as being formed
by the balloonlike expansion of an initial infinitesimal ellipsoid. ILet the
ellipsoid expand until it becomes tangent to the intersection of the condition
equation hyperplanes. For this point all the condition equations are satisfied
and the volume of the ellipsoid (and consequently § ) is obviously minimum-
Hence the coordinates of the point of tangency give the most probable resicuu.s,
Thus, from a geometrical point of view the only difference between the adjust-
ment of correlated and uncorrelated observations lies in the orientation of the
hyperellipsoid relative to the coordinate axes. To go somewhat further with the
interpretation we may suppose that the ellipsoid has been rotated into a stendard
position. Then the ellipsoid can be transformed to a hypersphere by a simple
stretch transformation. 7The most probable set of residuals is then given by the
coordinates of the point on the intersection of condition equation hyperplanes
which is closest tc the origin. The distance of this point from the origin
represents the sum of the squares of the residuals. This interpretation is espe-
cially convenient for problems in conventional least squares, since the ellipsoids
are in standard position to begin with and the necessary stretch is readily accom-
plished by scaling the observatious.

Duane C., Brown
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SUPPLEMENTARY REMAFRKS

After the present report had been readied for publication, the author
encountered the two additional matrix treatments of least squares which follow:

{21] c. R. Rao, "ADVANCED STATISTICAL METHODS IN BIOMETRIC RESEARCH," Wiley
(1952), ch. 2,3.

[22) o. Kempthorne, "THE DESIGN AND ANALYSIS OF EXPERIMENTS," Wiley (1952) 5
pp. 5L-66,

Both of these references consider the special case for which F,. is equal to
the unit matrix and O is merely a multiple of the unit matrix. ° Rao extends his
results to include the case for which some of the condition equations involve
parameters only. However, his FX'o submatrix for this more genera. -ase is
again the unit matrix,

G. H. Weiss of BRL has pointed out that the principal result of Section 7
is to be found in the reference

(2] H. Cramér, "MATHEMATICAL METHODS OF STATISTICS," Princeton Univ. Press
(19L6), pp. 312-313.

Cramér obtains the result quite simply by showing that the characteristic func-
tion of the transformation is that of a multinormal distribution with covar-
iance matrix of the form (7.16).

It has been suggested that a reference on inversion by the method of sub=-
matrices would be appropriate in connection with the derivation of equation
(Le7). This is provided by

2] Frazer, Duncan, Collar, "ELEMENTARY MATRICES," Cambridge Univ. Press
(1950), pp. 112-113,

Also in regard to (L4.7) it seems worthwhile to mention that the derivation is
considerably simplified if the relations (L4.18) - (4.20) are employed. This is
also true for the reductions leading to equations (5.22), (5.25) and (5.33).

25




No. of
cop_ies

3

10

DISTRIBUTION LIST

No, of
Organization Copies

Chief of Ordnance 1
Department of the Army
Washington 25, D. C,

.Attn: ORDTB - Bal Sec

ORDIX-AR
1
1
British Joint Serwvices Mission
1800 K Street, N. W.
Washington 6, D, C.
Attn: Miss Mary Scott,
Tech Services 2

Canadian Army Staff

21450 Massachusetts Avenue

Washington 8, D. C.

Of interest to: 1
Nat'l Res. Council of Canada
Ottawa 2, Ontario
Attn: Mr. T. J. Blachut

Chief, Bureau of Ordnance 2
Department of the Navy
Washington 25, D, C.

Attn: Re3

Commander 1
Naval Proving Ground
Dahlgren, Virginia

Commander 1
Naval Ordnance laboratory

White Oak

Silver Spring 19, Maryland

Commander

Naval Ordnance Test Station
China lake, California
Attn: Technical Library

Commander
U. S. Naval Air Missile Test Center
Point Mugu, California

L

Comaanding Officer

USS Norton Sound (AVI-1)
% Fleet P, O,

San Franeisco, California

26

Organization

Commander :

U. S. Naval Photographic Interpretation
Center

Anacostia Station

Washington 20, D, C.

U. S, Naval Hydrographic Center
Washington 25, D, C.

Commander

Wright Air Development Center
Wright-Patterson Air Force Base, Ohio
Attn: VCLFM '

Commander

Air Force Missile Test Center
Patrick Air Force Base

Cocoa, Florida

Commander

Air Force Armament Center
Eglin Air Force Base, Florida
Attn: ACGL

Commander

Air Force Cambridge Research Center
230 Albany Street

Cambridge 39, Massachusetts

Commander
Holloman Air Development Center
Holloman Air Force Base, New Mexico

Commander

Air Force Aeromautical Chart Service
Washington, D. C.

Attn: Div. of Photogrammetry

Director

Armed Services Technical Information
Agency

Documents Service Center

Knott Building

Dayton 2, Ohio

Attn: DSC - 84

ASTIA Reference Center
Technical Informaticn Division
Library of Congress

Washington 25, D, C,




No, of
CoEies

DISTRIBUTION LIST

No., of
Organization Copies
U. S. Geological Survey 1l

Washington, D. C.
Attn: Mr. R. E. Altenhofen

Director
U. S. Coast & Geodetic Survey 1
Washington 25, D. C.
Attn: Divisions of Geodesy
& Photogrammetry

R&D Coordinating committee on 1
Guided Missiles

Office of the Ass't Sec'y of Defense
The Pentagon

Washington 25, D, C,

Commanding Officer

U. So Army Map Service
6500 Brooks Lane
Washington 16, D. C.

Commanding Officer
Engineering Res. & Dev. lab.,
Fort Belvoir, Virginia
Attn: Div. of Photogrammetry

1
Commanding Officer
Diamond Ordnance Fuze laboratory
Connecticut Avenue & Van Ness St., N.W.
Washington 25, D. C.
Attn: Mr. Francis E. Washer 1

Commanding General

Redstone Arsenal

Huntsville, Alabama

Attn: Technical Library 1

Commanding General

White Sands Proving Ground

Las Cruces, New Mexico

Attn: ORDBS-TS-TIB 1

President
CONARC Board No. U
Fort Bliss, Texas

1
Commanding Officer
Signal Corps Engineering laboratory
¥ort lonmouth, New Jersey

Bausch & Lomb Optical Co.

Rochester, lNew York
Attn: Mr. Heins Gruner

27

o i el Aty

Organization I

Boston University

Physical Research Labs

Boston, Massachusetts

Attn: Dr. C. M. Aschenbrenner

Kellex Corporation

233 Broadway

New York City, New York
Attn: Dr. L, Wainwright

New Mexico School of Agriculture &
Mechanic Arts

State College, New Mexico

Attn: Dr. George Gardiner

North American Aviation, Inc.

Atomic Energy Research Dept. - [
Downey, California . _
Attn: Dr. E. R. Cohen |
Ohio State University

Mapping & Charting Research Ilab
Colunbus, Ohio .

Attn: Prof. Bertil Hallert

Pennsylvania State University
Department of Mathematics
State College, Pennsylvania
Attn: Prof. H, B, Curry

Princeton University
Department of Mattematics
Princeton, New Jersey

Attn: Professor S. S, Wilks

RCA Service Company, Inc.

Patrick Air Force Base, Klorida

Attn: RCA Data Reduction Group
Analysis Unit

Jowa State College

Department of lMathematics
Ames, Iowa

Attn: Professor 0. Kempthorne

University of Minnesota
College of Education
Minneapolis, Minnesota
Attn: Prof. P. 0. Johnson



No. of
Cogies

DISTRIBUTICN LIST

Orpganization

University of Michigan
Department of Mathematics
Ann Arbor, Michigan
Attn: Prof. P. S. Dwyer

University of Michigan
Ann Arbor, Michigan
Attn: Prof. Edward Young

Yale University
Department of Mathematics
New Haven, Connecticut
Attn: Prof. D. F. Votaw

Commanding General
Ordnance ‘Weapons Command
Rock Island, Illinois
Attn: Library

28

""‘“"“\_




